Name:

1) The stoppered tubes below, labeled *A* through *D*, each contain a different gas.

When the tubes are unstoppered at the same time and are under the same conditions of temperature and pressure, from which tube will gas diffuse at the *fastest* rate?

- 2) As the atmospheric pressure increases, the temperature at which water in an open container will boil
 - 1) decreases
 - 2) increases
 - 3) remains the same
- _____3) A 100. milliliter sample of a gas at a pressure of 50.65 kPa is reduced to 25.33 kPa at constant temperature. What is the new volume of the gas?
 - 1) 290. mL
 - 2) 90.0 mL
 - 3) 50.0 mL
 - 4) 200. mL
- _____4) Given the reaction:

 $2PbO \longrightarrow 2Pb + O_2$

What is the total volume of O_2 measured at STP, produced when 1.00 mole of PbO decomposes?

1)	5.60 L	3)	22.4 L
2)	11.2 L	4)	44.8 L

5) According to the *Vapor Pressure of Four Liquids* chemistry reference table, which substance is *most* volatile?

- 1) propanone
- 2) ethanoic acid
- 3) ethanol
- 4) water

6)

_7)

A 15-gram sample of a gas has a volume of 30. liters at STP. What is the density of the gas?

- 1) 0.50 g/L
- 2) 15. g/L
- 3) 30. g/L
- 4) 2.0 g/L

Samples of SO₂(g) and N₂(g) contain equal numbers of molecules. If the gases are at STP, the samples have

- 1) the same density
- 2) equal volumes
- 3) equal numbers of atoms
- 4) the same molecular mass
- 8) Which gas will diffuse at the *fastest* rate under the same conditions of temperature and pressure?
 - 1) N₂ 3) H₂
 - 2) F₂ 4) O₂

9) The diagrams below represent three 1-liter containers of gas, *A*, *B*, and *C*. Each container is at STP.

Which of the following statements correctly compares the number of molecules in the containers?

- 1) Container *C* has the greatest number of molecules.
- 2) Container *A* has the greatest number of molecules.
- 3) All three containers have the same number of molecules.
- 4) Container *B* has the greatest number of molecules.
- ____10) What is the boiling point of propanone at standard atmospheric pressure?

1)	78°C	3)	56°C
2)	30°C	4)	100°C

(11) At constant pressure, which graph shows the correct relationship between the volume of a gas (V) and its absolute temperature (T)?

- 12) According to the *Vapor Pressure of Four Liquids* chemistry reference table, if the pressure on the surface of water in the liquid state is 47.0 kPa, the water will boil at
 - 1) $80^{\circ}C$ 3) $60^{\circ}C$
 - 2) 35°C 4) 95°C

_13) What is the vapor pressure of a liquid at its normal boiling temperature?

- 1) 273 atm
- 2) 2 atm
- 3) 1 atm
- 4) 760 atm
- _ 14) The chart below shows the change in vapor pressure of four liquids with increasing temperature.

What liquid has the *lowest* normal boiling point?

1)	Α	3)	С
•	-		-

2) B 4) D

- _ 15) How many moles are in 5.6 liters of a gas at STP?
 - 1) 0.50 mole
 - 2) 0.75 mole
 - 3) 0.25 mole
 - 4) 1.0 mole

16) At a temperature of 273 K, a 400-milliliter gas sample has a pressure of 101.3 kPa. If the pressure is changed to 50.65 kPa, at what temperature will this gas sample have a volume of 600 milliliters?

1) 273 K	3)	205 K	
\mathbf{a}	5 A C 17	1)	100 17

2) 546 K 4) 100 K

17)	Which sample of water has the <i>greatest</i> vapor pressure?	23)	A 2.00-gram sample of helium gas at STP will occupy a volume of
	1) 200 mL at 25°C		1) 33.6 L 3) 11.2 L
	2) 20 mL at 30 °C		2) 44.8 L 4) 22.4 L
	3) 100 mL at 20° C	24)	One reason that a real gas deviates from an
	4) 40 mL at 35° C		ideal gas is that the molecules of the real gas
18)	A 2.5-liter sample of gas is at STP. When		have
	the temperature is raised to 273°C and the		1) forces of attraction for each other
	pressure remains constant, the new volume of		2) no net loss of energy on collision
	the gas will be		3) a straight-line motion
	1) 5.0 L 3) 1.25 L	25	4) a negligible volume
	2) 10. L 4) 2.5 L	25)	Given the reaction:
19)	As the space between molecules in a gas		$2CH_3OH(\ell) + 3O_2(g) \longrightarrow$
	sample decreases, the tendency for the		$2CO_2(g) + 4H_2O(g)$
	behavior of this gas to deviate from the ideal gas laws		
	1) decreases		How many liters of $O_2(g)$ are needed to
	2) remains the same		produce exactly 200 liters of CO ₂ (g)?
	3) increases		1) 200 L 3) 300 L
20)	A gas has a pressure of 40.0 kPa, a		2) 400 L 4) 100 L
	temperature of 400. K, and a volume of	26)	Which change must result in an increase in
	50.0 milliliters. What volume will the gas have		the average kinetic energy of the molecules of
	at a pressure of 20.0 kPa and a temperature of 200. K?		a sample of $N_2(g)$?
	1) 50.0 mL		1) The pressure changes from
	2) 200. mL		0.5 atmosphere to 1 atmosphere. 20% C to
	3) 12.5 mL		2) The temperature changes from 20°C to 30°C.
	4) 100. mL		3) The density changes from 2.0 g/l to
21)	An ideal gas is made up of gas particles that		2.5 g/L.
	1) can be liquefied		4) The volume changes from 1 liter to
	2) attract each other		2 liters.
	3) are in random motion	27)	What Kelvin temperature is the same as
	4) have volume		-13° Celsius?
22)	A 1-liter flask contains two gases at a total		1) 747 K 3) 773 K
	pressure of 3.0 atmospheres. If the partial pressure of one of the gases is		2) 286 K 4) 260 K
	0.5 atmosphere, then the partial pressure of	28)	As the temperature of a sample of a gas
	the other gas must be		increases at constant pressure, the volume of
	1) 0.50 atm		the gas sample
	2) 1.5 atm		1) decreases
	3) 2.5 atm		 2) increases 3) remains the same
	4) 1.0 atm		

- 29) A sample of oxygen gas in a closed system has a volume of 200 milliliters at 600 K. If the pressure is held constant and the temperature is lowered to 300 K, the new volume of the gas will be
 - 1) 300 mL
 - 2) 100 mL
 - 3) 400 mL
 - 4) 200 mL
- ____ 30)

The diagram represents a gas confined in a cylinder fitted with a movable piston.

As the piston moves toward point A at constant temperature, which relationship involving pressure (P) and volume (V) is correct?

1) P - V = k

$$2) \quad P \times V = k$$

$$3) \quad P + V = k$$

4)
$$\frac{1}{V} = k$$

_____31) When 7.00 moles of gas *A* and 3.00 moles of gas *B* are combined, the total pressure exerted by the gas mixture is 1.0 atm. What is the partial pressure exerted by gas *A* in this mixture?

- 1) 0.70 atm
- 2) 1.0 atm
- 3) 0.10 atm
- 4) 0.30 atm

____32) The temperature 30. K expressed in degrees Celsius is

- 1) 243°C
- 2) -303°C
- 3) -243°C
- 4) 303°C

33) Which gas under high pressure and low temperature has a behavior *closest* to that of an ideal gas?

- 1) O₂(g)
- 2) NH3(g)
- 3) CO₂(g)
- 4) H₂(g)
- _ 34) Which gas has approximately the same density as C₂H₆ at STP?
 - 1) NH₃ 3) NO
 - 2) H₂S 4) SO₂
- 35) In a laboratory experiment, students measured the vapor pressure of two unknown liquids. Their data is recorded in the table below.

Substance	Vapor Pressure (kPa)	Temperature (°C)
X	115	60
V	145	110

Based on the data shown, substance X could be

1) propanone

3) water

2) ethanol

4) ethanoic acid