Name:

____1) Given the reaction:

$$Cu + 4HNO_3 \longrightarrow$$

 $Cu(NO_3)_2 + 2H_2O + 2NO_2$

What is the total mass of H₂O produced when 32 grams of Cu is completely consumed?

1) 18 g

3) 9.0 g

2) 72 g

4) 36 g

2) Given the reaction:

$$2CO + O_2 \longrightarrow 2CO_2$$

What is the minimum number of moles of O_2 required to produce one mole of CO_2 ?

1) 0.50

3) 2.0

2) 0.25

4) 1.0

____ 3) Given the reaction:

$$4Al + 3O_2 \longrightarrow 2Al_2O_3$$

How many moles of Al₂O₃ will be formed when 27 grams of Al reacts completely with O₂?

1) 1.0

3) 0.50

2) 2.0

4) 4.0

____4) Given the reaction:

$$3Cu + 8HNO_3 \longrightarrow$$

 $3Cu(NO_3)_2 + 2NO + 4H_2O$

The total number of grams of Cu needed to produce 1.0 mole of Cu(NO₃)₂ is

1) 192 g

3) 128 g

2) 32 g

4) 64 g

5) In the reaction Fe₂O₃ + 3CO → 2Fe + 3CO₂, what is the total number of moles of CO used to produce 112 grams of iron?

1) 1.0

3) 3.0

2) 2.0

4) 4.0

____ 6) When the equation

$$Na(s) + H_2O(l) \longrightarrow$$
 $NaOH(aq) + H_2(g)$

is correctly balanced using *smallest* whole numbers, the coefficient of the water is

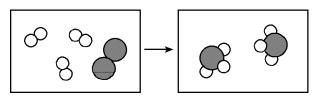
1) 1

3) 3

2) 2

4) 4

____7) Consider the reaction:


$$H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2O(\ell) + energy$$

Which of the following phrases *best* describes this reaction?

- 1) exothermic, absorbing energy
- 2) endothermic, absorbing energy
- 3) endothermic, releasing energy
- 4) exothermic, releasing energy

Questions 8 and 9 refer to the following:

In the particle diagram below, \bigcirc represents an atom of element A and \bigcirc represents an atom of element B.

- ____8) Which equation *best* describes the reaction shown in the diagram?
 - 1) $3A + B \longrightarrow 2AB$
 - $2) \quad 3A_2 + B_2 \longrightarrow 2A_3B$
 - 3) $A_2 + 3B_2 \longrightarrow 2AB_3$
 - 4) $2A + 6B \longrightarrow A_2B_6$

- ____9) What general type of reaction is illustrated in the diagram?
 - 1) synthesis
 - 2) decomposition
 - 3) single replacement
 - 4) double replacement
- ____ 10) Given the reaction:

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

What is the ratio of moles of H₂(g) consumed to moles of NH₃(g) produced?

1) 6:6

3) 2:3

2) 3:2

- 4) 1:2
- ____ 11) When the equation

$$_C_8H_{16} + _O_2 \longrightarrow$$
 $_CO_2 + _H_2O$

is correctly balanced using the *smallest* whole number coefficients, the coefficient of O₂ is

1) 8

3)

2) 12

- 4) 16
- ____ 12) Given the reaction:

$$2CO + O_2 \longrightarrow 2CO_2$$

What is the minimum number of grams of CO required to produce 88 grams of CO₂?

1) 28 g

3) 64 g

2) 56 g

4) 88 g

When the equation

____ 13)

$$_Al_2(SO_4)_3 + _ZnCl_2 \longrightarrow$$
 $_AlCl_3 + _ZnSO_4$

is correctly balanced using the *smallest* whole number coefficients, the sum of the coefficients is

1) 5

3) 9

2) 8

- 4) 4
- __ 14) Given the reaction:

$$2$$
NaOH + H₂SO₄ \longrightarrow Na₂SO₄ + 2H₂O

What is the total number of moles of NaOH needed to react completely with 2 moles of H₂SO₄?

1) 1

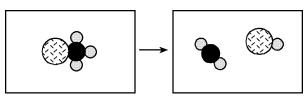
3) 0.5

2) 2

- 4) 4
- ____ 15) Given the unbalanced equation:

$$Li + N_2 \longrightarrow Li_3N$$

When the equation is correctly balanced using *smallest* whole numbers, the coefficient of the lithium is


1) 1

3) 3

2) 2

4) 6

____ 16) What general type of chemical reaction is illustrated in the particle diagram below?

- 1) synthesis
- 2) double replacement

- 3) decomposition
- 4) single replacement