Name: \qquad
\qquad 1) Given the reaction:

$$
\begin{aligned}
& \mathrm{Cu}+4 \mathrm{HNO}_{3} \longrightarrow \\
& \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{NO}_{2}
\end{aligned}
$$

What is the total mass of $\mathrm{H}_{2} \mathrm{O}$ produced when 32 grams of Cu is completely consumed?

1) 18 g
2) 72 g
3) 9.0 g
4) 36 g
__ 2) Given the reaction:

$$
2 \mathrm{CO}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2}
$$

What is the minimum number of moles of O_{2} required to produce one mole of CO_{2} ?

1) 0.50
2) 0.25
3) 2.0
4) 1.0
5) Given the reaction:

$$
4 \mathrm{Al}+3 \mathrm{O}_{2} \longrightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}
$$

How many moles of $\mathrm{Al}_{2} \mathrm{O}_{3}$ will be formed when 27 grams of Al reacts completely with O_{2} ?

1) 1.0
2) 2.0
3) 0.50
4) 4.0
__4) Given the reaction:

$$
\begin{aligned}
& 3 \mathrm{Cu}+8 \mathrm{HNO}_{3} \longrightarrow \\
& 3 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}+4 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

The total number of grams of Cu needed to produce 1.0 mole of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ is

1) 192 g
2) 32 g
3) 128 g
4) 64 g

In the reaction $\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \longrightarrow$
$2 \mathrm{Fe}+3 \mathrm{CO}_{2}$, what is the total number of moles of CO used to produce 112 grams of iron?

1) 1.0
2) 2.0
3) 3.0
4) 4.0
_- 6
5) When the equation

$$
\begin{aligned}
& _\mathrm{Na}(\mathrm{~s})+_\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \\
& _\mathrm{NaOH}(\mathrm{aq})+__\mathrm{H}_{2}(\mathrm{~g})
\end{aligned}
$$

is correctly balanced using smallest whole numbers, the coefficient of the water is

1) 1
2) 2
3) 3
4) 4
__ 7) Consider the reaction:

$$
\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\ell)+\text { energy }
$$

Which of the following phrases best describes this reaction?

1) exothermic, absorbing energy
2) endothermic, absorbing energy
3) endothermic, releasing energy
4) exothermic, releasing energy

Questions 8 and 9 refer to the following:
In the particle diagram below, \bigcirc represents an atom of element A and \bigcirc represents an atom of element B.

8) Which equation best describes the reaction shown in the diagram?

1) $3 A+B \longrightarrow 2 A B$
2) $3 A_{2}+B_{2} \longrightarrow 2 A_{3} B$
3) $A_{2}+3 B_{2} \longrightarrow 2 A B_{3}$
4) $2 A+6 B \longrightarrow A_{2} B_{6}$
_9) What general type of reaction is illustrated in the diagram?
5) synthesis
6) decomposition
7) single replacement
8) double replacement
\qquad 10) Given the reaction:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

What is the ratio of moles of $\mathrm{H}_{2}(\mathrm{~g})$ consumed to moles of $\mathrm{NH}_{3}(\mathrm{~g})$ produced?

1) $6: 6$
2) $3: 2$
3) $2: 3$
4) $1: 2$
\qquad 11) When the equation

$$
\begin{aligned}
& \mathrm{C}_{8} \mathrm{H}_{16}+\ldots \mathrm{O}_{2} \longrightarrow \\
& -\mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

is correctly balanced using the smallest whole number coefficients, the coefficient of O_{2} is

1) 8
2) 12
3) 1
4) 16
\qquad 12) Given the reaction:

$$
2 \mathrm{CO}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2}
$$

What is the minimum number of grams of CO required to produce 88 grams of CO_{2} ?

1) 28 g
2) 56 g
3) 64 g
4) 88 g
\qquad 13) When the equation

$$
\begin{aligned}
& \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\ldots \mathrm{ZnCl}_{2} \longrightarrow \\
& \ldots \mathrm{AlCl}_{3}+\ldots \mathrm{ZnSO}_{4}
\end{aligned}
$$

is correctly balanced using the smallest whole number coefficients, the sum of the coefficients is

1) 5
2) 8
3) 9
4) 4
5) Given the reaction:

$$
\begin{aligned}
& 2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \\
& \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

What is the total number of moles of NaOH needed to react completely with 2 moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$?

1) 1
2) 2
3) 0.5
4) 4
_ 15) Given the unbalanced equation:

$$
\mathrm{Li}+\mathrm{N}_{2} \longrightarrow \mathrm{Li3} \mathrm{~N}
$$

When the equation is correctly balanced using smallest whole numbers, the coefficient of the lithium is

1) 1
2) 2
3) 3
4) 6
5) What general type of chemical reaction is illustrated in the particle diagram below?

6) synthesis
7) double replacement
8) decomposition
9) single replacement
