Name:					
1)	Compared to an ordinary chemical reaction, a fission reaction will	6)			
	 absorb smaller amounts of energy absorb larger amounts of energy release smaller amounts of energy release larger amounts of energy 				
2)	The atoms of some elements can be made radioactive by				
	 separating them into their isotopes placing them in a magnetic field bombarding them with high-energy particles 	7)			
	4) heating them to a very high temperature				
3)) If 8.0 grams of a sample of ⁶⁰ Co existed ir 1990, in what year will the remaining amoun of ⁶⁰ Co in the sample be 0.50 gram?				
	1)20063)20112)19954)2000				
4)	 A radioisotope is called a tracer when it is used to 1) kill bacteria in food 2) determine the age of animal skeletal remains 3) determine the way in which a chemical reaction occurs 	8)			
	4) kill cancerous tissue				
5)	Given the equation:	9)			

- an alpha particle 1)
- a beta particle 2)
- 3) a neutron
- a positron 4)

5) Given the equation:

$$^{14}_{6}C \longrightarrow ^{14}_{7}N + X$$

What particle is represented by the letter *X*?

- 1) an alpha particle
- 2) a proton
- 3) a neutron
- 4) a beta particle

Radiation used in the processing of food is) intended to

- increase the rate of nutrient 1) decomposition
- convert ordinary nutrients to more stable 2) forms
- 3) kill microorganisms that are found in food
- 4) replace chemical energy with nuclear energy

- At the end of 12 days, $\frac{1}{4}$ of an original sample of a radioactive element remains. What is the half-life of the element?
 - 24 days 1)
 - 6 days 2)
 - 48 days 3)
 - 3 days 4)

Which equation represents a fusion reaction?

1)
$${}^{3}_{1}H + {}^{1}_{1}H \longrightarrow {}^{4}_{2}He$$

2)
$$\begin{array}{c} 234\\ 91\end{array}$$
 Pa $\longrightarrow \begin{array}{c} 234\\ 92\end{array}$ U + $\begin{array}{c} 0\\ 1\end{array}$ e

- 3) $\begin{array}{c} 226\\ 88 \end{array}$ Ra $\longrightarrow \begin{array}{c} 226\\ 86 \end{array}$ Rn + $\begin{array}{c} 4\\ 2 \end{array}$ He
- 4) $\begin{array}{c} 40\\ 18 \end{array}$ + $\begin{array}{c} 1\\ H\end{array}$ + $\begin{array}{c} 40\\ 19 \end{array}$ + $\begin{array}{c} 1\\ 0 \end{array}$ + $\begin{array}{c} 0\\ 0 \end{array}$ + $\begin{array}{c} 0\\ 0 \end{array}$

N

			2491 - 1 - Page 2
10)	Radioactive elements include all those	16)	A gamma ray is best described as having
	elements whose nuclei contain more than		1) no electric charge and no mass
	1) 83 neutrons		2) a negative charge and no mass
	2) 83 amu		3) a positive charge and a mass number
	3) 83 nucleons		of 2
	4) 83 protons		4) a positive charge and a mass number
11)	Radioisotopes used for medical diagnosis		of 4
/	must have	17)	A radioactive isotope has a half-life of
	1) long half-lives and be slowly eliminated	,	10 years. What fraction of the original mass
	by the body		will remain unchanged after 50 years?
	2) long half-lives and be quickly eliminated		1) $\frac{1}{16}$ 3) $\frac{1}{2}$
	by the body		1) $\frac{1}{16}$ 3) $\frac{1}{2}$
	3) short half-lives and be slowly eliminated		2) $\frac{1}{8}$ 4) $\frac{1}{32}$
	by the body		
	4) short half-lives and be quickly eliminated	18)	A sample of 131 decays to 1.0 gram in
	by the body		40. days. What was the mass of the original
12)	Given the equation:		sample? [half-life = 8.07 days]
(•		1) 32 g 3) 8.0 g
	$X \longrightarrow {4 \atop 2} \text{He} + {216 \atop 85} \text{At}$		2) 4.0 g 4) 16 g
	2 85	19)	What conditions are required to form He-4
	What element is represented by the letter <i>X</i> ?		during the fusion reaction in the Sun?
	1) Rn 3) Fr		1) high temperature and high pressure
	2) Ra 4) Bi		2) low temperature and high pressure
13)	Which fissionable elements are produced in		3) high temperature and low pressure
(0)	breeder reactors?		4) low temperature and low pressure
	1) lithium-6 and hydrogen-3	20)	Which species has a negative charge?
	2) carbon-14 and oxygen-17		1) a lithium ion
	3) uranium-233 and plutonium-239		2) an alpha particle
	4) cesium-137 and radon-222		3) a beta particle
14)	Which particle is given off when		4) an aluminum ion
1+)	phosphorus-32 undergoes a transmutation	21)	Which sample will decay <i>least</i> over a period
	reaction?		of 30 days? [Refer to the <i>Selected</i>
	1) a positron		<i>Radioisotopes</i> chemistry reference table.]
	2) a neutron		1) 10 g of P-32
	a) an alpha particle		2) 10 g of I-131
	4) a beta particle		3) 10 g of Rn-222
15)			4) 10 g of Au-198
15)	Which particle has the <i>greatest</i> mass?	22)	Radioactivity can be detected by use of
	1) an alpha particle		
	2) an electron		
	3) a neutron		
	4) a beta particle		
			4) neutral litmus paper

			2+91 - 1 - 1 age 3
23)	 Which list of particles can <i>all</i> be accelerated by electric and magnetic fields in a particle accelerator? 1) alpha particles and neutrons 2) protons, electrons, and alpha particles 3) neutrons, protons, and electrons 4) protons, neutrons, electrons, and alpha particles 	29)	 Samples of elements that are radioactive <i>must</i> contain atoms 1) in the ground state 2) with unstable nuclei 3) in the excited state 4) with stable nuclei The fission process in a reactor can be
24)	Which species has a positive charge?1) a beta particle		 regulated by adjusting the number of neutrons available. This is done by the use of 1) coolants 2) control rods
	 an alpha particle an bromide ion 		 shielding moderators
25)	Which procedure is based on the half-life of a radioisotope?1) accelerating to increase kinetic energy2) counting to determine a level of	31)	Brain tumors can be located by using an isotope of1) iodine-1312) uranium-238
	radioactivity3) radiating to kill cancer cells4) dating to determine age	32)	 3) carbon-14 4) technetium-99 In a nuclear reactor, the purpose of the
26)	 A fusion reaction differs from a fission reaction in that the fusion reaction requires 1) extremely low temperatures 2) neutrons with low kinetic energy 3) heavy atomic nuclei as fuels 4) extremely high temperatures 		 moderator is 1) split neutrons 2) absorb neutrons 3) slow down neutrons 4) produce neutrons
27)	 The structure of an alpha particle is the same as a 1) neon atom 2) helium nucleus 3) lithium atom 4) hydrogen nucleus 	33)	Given the equation: $ \begin{array}{rcl} 1 & 4 \\ 7 & N & + & 4 \\ 2 & He & \longrightarrow & 17 \\ 8 & 0 & + & 1 \\ 1 & X \end{array} $ What particle is represented by the letter X? 1) a proton 2) a deuteron
28)	 During a fission reaction, which type of particle is captured by a nucleus? 1) proton 2) electron 3) deuteron 4) neutron 	34)	3) a triton 4) a neutron What does the following reaction represent an example of? $\frac{14}{7}N + \frac{4}{2}He \longrightarrow \frac{17}{8}O + \frac{1}{1}H$
			 a natural transmutation an artificial transmutation a fission reaction

- 2) absorb neutrons
- 3) slow down neutrons
- 4) produce neutrons
- Given the equation:

- 1) a proton
- 2) a deuteron
- 3) a triton
- 4) a neutron

$$^{14}_{7}$$
N + $^{4}_{2}$ He \longrightarrow $^{17}_{8}$ O + $^{1}_{1}$ H

- a natural transmutation 1)
- 2) an artificial transmutation
- 3) a fission reaction
- 4) a chain reaction

- ____35) In the nuclear reactor, the radioisotope U-235 serves as a
 - 1) shield
 - 2) coolant
 - 3) fissionable material
 - 4) neutron absorber
- ____36) According to the *Selected Radioisotopes* chemistry reference table, which is a decay product of Fe-53?
 - 1) Co-53 3) Mn-53
 - 2) Ni-47 4) Cr-49

_37) T

The graph below represents the decay of a radioactive isotope.

Based on the *Selected Radioisotopes* chemistry reference table, which radioisotope is *best* represented by the graph?

- 1) 222Rn 3) 198Au
- 2) 32P 4) 131I
- ____38) In an electric field, what emanation is deflected toward the negative electrode?
 - 1) gamma rays
 - 2) alpha particle
 - 3) x-rays
 - 4) beta particle

_____39) What kind of reaction is represented by the equation below?

- 1) fission
- 2) thermonuclear

- 3) fusion
- 4) natural transmutation

_40) The diagram below represents a nuclear reaction in which a neutron bombards a heavy nucleus.

Which type of reaction does the diagram illustrate?

- 1) fusion 3) be
- 2) fission

- 3) beta decay
- 4) alpha decay
- _____41) In the diagram below, the radiation from a radioactive source is being separated as it passes between electrically charged plates.

What are the three types of radiation observed on the detector?

1) X = gamma, Y = beta, Z = alpha

3) X = alpha, Y = beta, Z = gamma

2) X = gamma, Y = alpha, Z = beta

4) X = beta, Y = gamma, Z = alpha