Unit \#3

1. Protons are positively charged (+).
2. Neutrons have no charge.
3. Electrons are small and are negatively charged (-).
4. Protons \& neutrons are in an atom's nucleus (nucleons).
5. Electrons are found in "clouds" (orbitals) around an atom's nucleus.
6. The mass number is equal to an atom's number of protons and neutrons added together.
7. The atomic number is equal to the number of protons in the nucleus of an atom.
8. The number of neutrons = mass number - atomic number.
9. Isotopes are atoms with equal numbers of protons, but differ in their neutron numbers.
10. Cations are positive (+) ions and form when a neutral atom loses electrons. They are smaller than their parent atom.
11. Anions are negative ions and form when a neutral atom gains electrons. They are larger than their parent atom.
12. Ernest Rutherford's gold foil experiment showed that an atom is mostly empty space with a small, dense, positively-charged nucleus.
13. J.J. Thompson discovered the electron and developed the "plum-pudding" model of the atom.

14. Dalton's model of the atom was a solid sphere of matter that was uniform throughout.
15. The Bohr Model of the atom placed electrons in "planet-like" orbits around the nucleus of an atom.
16. The current, wave-mechanical model of the atom has electrons in "clouds" (orbitals) around the nucleus.
17. Electrons emit energy as light when they jump from higher energy levels back down to lower (ground state) energy levels. Bright line spectra are produced.
18. Isotopes are written in a number of ways: $\mathrm{C}-14$ is also Carbon-14, and is also

19. The distribution of electrons in an atom is its electron configuration.
20. Electron configurations are written in the bottom center of an element's box on the periodic table in your reference tables.

21. Orbital notation is a way of drawing the electron configuration of an atom.

22. Use the mole triangle diagram below to help you solve conversions between moles, grams, numbers of molecules/atoms, and liters of gases at STP...

The Mole Triangle

Remember This:

You can only move by following the arrows through the center.

Grams

$\left\{\begin{array}{l}\text { Molar } \\ \text { Mass }\end{array}\right.$

Divide \& Multiply by the values next to the arrows as you go from one value to another.

1 Mole

