- 1) The amount of heat required to raise the temperature of one gram of a substance by one degree Celsius is called
 - 1) heat of fusion
 - 2) specific heat capacity
 - 3) vapor pressure
 - 4) heat of vaporization
- ____2) Which temperature is the same as -13° Celsius?
 - 1) 747 K 3) 260 K
 - 2) 773 K 4) 286 K
- _____ 3) The graph below represents the uniform cooling of a sample of a substance, starting with the substance as a gas above its boiling point.

What segment of the curve represents a time when *both* the liquid and the solid phases are present?

- 1) DE
 3) CD

 2) BC
 4) EF
- 4) What unit is used to express the amount of energy absorbed or released during a chemical reaction?
 - 1) torr 3) gram
 - 2) joule 4) degree
- _____5) Which of the following *best* describes exothermic chemical reactions?
 - 1) They never release heat.
 - 2) They never occur spontaneously.
 - 3) They always occur spontaneously.
 - 4) They always release heat.

- .6) How many joules are equivalent to 35 kilojoules?
 - 1) 0.35 joule
 - 2) 3,500 joules
 - 3) 0.035 joule
 - 4) 35,000 joules

As ice at 0°C changes to water at 0°C, the average kinetic energy of the ice molecules

1) decreases

7)

- 2) remains the same
- 3) increases

(8) What type of energy is stored within a chemical substance?

- 1) potential energy
- 2) kinetic energy
- 3) activation energy
- 4) free energy

Which unit is used to express the amount of energy absorbed or released during a chemical reaction?

- 1) calorie 3) degree
- 2) torr 4) gram
- 10) The graph below represents changes of state for an unknown substance.

What is the boiling temperature of the substance?

- 1) 40° C 3) 20° C
- 2) $0^{\circ}C$ 4) $70^{\circ}C$

11)	The minimum number of fixed points requiredto establish the Celsius temperature scale fora thermometer is1)13)32)24)4	17)	The temperature of 50. grams of water was raised to 50. °C by the addition of 4,180 joules of heat energy. What was the initial temperature of the water? [<i>Specific Heat of Water</i> = $4.18 J/g \cdot k$]	S			
12)	Which phase change results in a release of energy?		1) 60.°C 3) 30.°C 2) 10.°C 4) 20.°C				
	1) $\operatorname{NH}_3(\ell) \longrightarrow \operatorname{NH}_3(g)$ 2) $\operatorname{H}_2O(s) \longrightarrow \operatorname{H}_2O(\ell)$ 3) $\operatorname{Br}_2(g) \longrightarrow \operatorname{Br}_2(s)$ 4) $\operatorname{I}_2(s) \longrightarrow \operatorname{I}_2(g)$	18)	If 4.0 grams of water at 1 °C absorbs 33 joules of heat, what will be the change in temperature of the water? [<i>Specific Heat of</i> <i>Water</i> = $4.18 J/g \cdot k$]	n วf			
13)	As a 1-gram sample of $H_2O(l)$ changes to		1) 1.0°C 3) 4.0°C				
13)	$H_2O(g)$ at 100 °C, the potential energy of the molecules	19)	 2) 3.0°C 4) 2.0°C According to an accepted chemistry reference, the heat of vaporization of water is 2,260 joules per gram. A student determined in the laboratory that the heat of vaporization of water was 2,590 joules per gram. What is 				
	 decreases remains the same increases 						
14)	What is the specific heat capacity of $H_2O(l)$?		1) 12.7 3) 87.3 2) 14.6 4) 80.0				
15)	 1.0 J/g•K 333.6 J/g 2,259 J/g 4.2 J/g•K Which of the following substances is made of a sticker with the following substances is made of a sticker with the following substances is made of a sticker with the following substances is made of a sticker with the following substances is made of a sticker with the following substances is made of a sticker with the following substances is made of a sticker with the following substances is made of a sticker with the following substances is made of a sticker with the following substances is made of a sticker with the following substances is made of a sticker with the following substances is made of a sticker with the following substances is made of a sticker with the sticker withe sticker with the sticker with the sticker withe sticker withe	20)	 2) 14.6 4) 80.0 Which is the equivalent of 750. calories? 1) 0.750 kcal 2) 75.0 kcal 3) 7.50 kcal 4) 750 kcal 				
	particles with the <i>highest</i> average kinetic energy? 1) $CO_2(g)$ at 25 °C 2) $H_2O(\ell)$ at 30 °C 3) $Br_2(\ell)$ at 20 °C 4) Fe(s) at 35 °C	21)	 As electrical energy is converted into heat energy, the total amount of energy in the system 1) remains the same 2) decreases 3) increases 				
16)	 The temperature of a substance is a measure of its particles' 1) average potential energy 2) entropy 3) average kinetic energy 4) enthalpy 	22)	A 7.0 gram sample of water is heated and the temperature rises from 10° C to 15° C. What is the total amount of heat energy absorbed by the water? [<i>Specific Heat of</i> <i>Water</i> = 4.18 J/g • k] 1) 117 joules 2) 29 joules 3) 146 joules 4) 88 joules	•			

1088 - 1 - Page 3

- 23) In an experiment, the gram atomic mass of magnesium was determined to be 24.7. Compared to the accepted value 24.3, what is the percent error for this determination?
 - 24.7 1) 3) 0.400
 - 2) 98.4 1.65 4)
- What is the total number of joules of heat _24) energy absorbed when the temperature of 200 grams of water is raised from 10°C to 40°C? [Specific Heat of Water = 4.18 J/g •k]
 - 200 joules 1)
 - 2) 25,080 joules
 - 3) 30 joules
 - 4) 33,440 joules
- _ 25) Solid *X* is placed in contact with solid *Y*. Heat will flow spontaneously from X to Ywhen
 - X is 20° C and Y is 20° C 1)
 - X is -25° C and Y is -10° C 2)
 - 3) X is 10° C and Y is 5° C
 - X is 25° C and Y is 30° C 4)
- 26) What occurs when the temperature of 10.0 grams of water is changed from 15.5°C to 14.5°C? [Specific Heat of Water = $4.18 J/g \cdot k$]
 - 1) The water absorbs 41.8 joules.
 - 2) The water absorbs 155 joules.
 - 3) The water releases 41.8 joules.
 - 4) The water releases 155 joules.
- 27) Which change of phase is exothermic?
 - 1) gas to a liquid
 - 2) liquid to a gas
 - 3) solid to a liquid
 - 4) solid to a gas
- 28) The amount of energy needed to change a given mass of ice to water at constant temperature is called the heat of
 - fusion 1)
 - 2) formation
 - 3) crystallization
 - 4) condensation

- 29) What is the total number of joules of heat needed to change 150.0 grams of ice to water at 0° C? (heat of fusion = 333.6 J/g)
 - 50,040 1) 333.6 3) 2) 1,394 4) 2.224
- 30) The diagrams below represent two solids and the temperature of each.

What occurs when the two solids are placed in contact with each other?

- 1) Heat energy flows from solid A to solid B. Solid A decreases in temperature.
- 2) Heat energy flows from solid *B* to solid A. Solid B decreases in temperature.
- 3) Heat energy flows from solid A to solid B. Solid A increases in temperature.
- Heat energy flows from solid *B* to 4) solid A. Solid B increases in temperature.
- _ 31) How many grams of water will absorb a total of 2,510 joules of energy when the temperature of the water changes from 10.0°C to 30.0°C? [Specific Heat of Water = $4.18 J/g \cdot k$]

1)	20.0 g	3)	126 g
2)	83.6 g	4)	30.0 g

- 32) How many kilojoules of heat are absorbed when 70.00 grams of water is completely vaporized at its boiling point? [Specific Heat of Water = $4.18 J/g \cdot k$]
 - 1) 2.259 kJ
 - 2) 2,259 kJ
 - 3) 158.1 kJ
 - 158,130 kJ 4)

____33) When a substance was dissolved in water, the temperature of the water increased. This process is described as

- 1) endothermic, with the absorption of energy
- 2) exothermic, with the absorption of energy
- 3) exothermic, with the release of energy
- 4) endothermic, with the release of energy
- 34) Which Kelvin temperature is equal to $-33^{\circ}C$?
 - 1) -33 K 3) 306 K
 - 2) 33 K 4) 240 K
- ____35) Energy of position or stored energy is also called
 - 1) chemical energy
 - 2) potential energy
 - 3) activation enery
 - 4) kinetic energy

- 36) What quantity of heat does a kilojoule represent?
 - 1) 1,000 joules
 - 2) $\frac{1}{100}$ of a joule
 - 3) 100 joules
 - 4) $\frac{1}{1000}$ of a joule
- _____37) As the temperature of a gas is increased, the average kinetic energy of its molecules
 - 1) decreases
 - 2) increases
 - 3) remains the same

38) The graph below represents the uniform cooling of a substance starting as a gas at 160° C.

At which temperature does a phase change occur for this substance?

- 1) $0^{\circ}C$ 2) $140^{\circ}C$ 3) $40^{\circ}C$ 4) $80^{\circ}C$
- ____ 39) A student obtained the following data while cooling a substance. The substance was originally in the liquid phase at a temperature below its boiling point.

Time (minutes)	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0
Temperature (°C)	70	63	57	54	53	53	53	53	53	52	51	48

What is the freezing point of the substance?

1) 70°	C 2) 48°C	3)	53°C	4)	59°C
--------	-----	--------	----	------	----	------