Name: \qquad
\qquad 1) Given the reaction:

$$
\begin{aligned}
& \mathrm{Ca}(\mathrm{~s})+\mathrm{Cu}^{2}+(\mathrm{aq}) \longrightarrow \\
& \mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{~s})
\end{aligned}
$$

Which represents the correct half-reaction for the reduction that occurs?

1) $\mathrm{Cu}^{2}+(\mathrm{aq})+2 \mathrm{e}^{-} \longrightarrow \mathrm{Cu}(\mathrm{s})$
2) Cu (s) $\longrightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-}$
3) Cu (s) $+2 \mathrm{e}^{-} \longrightarrow \mathrm{Cu}^{2}+(\mathrm{aq})$
4) $\mathrm{Cu}^{2}+(\mathrm{aq}) \longrightarrow \mathrm{Cu}(\mathrm{s})+2 \mathrm{e}^{-}$
\qquad 2) In the reaction $\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow$
$\mathrm{HClO}+\mathrm{HCl}$, the hydrogen is
5) oxidized, only
6) neither oxidized nor reduced
7) both oxidized and reduced
8) reduced, only
9) Which half-reaction correctly represents reduction?
10) $\mathrm{Cr}^{3+}+3 \mathrm{e}^{-} \longrightarrow \mathrm{Cr}(\mathrm{s})$
11) $\mathrm{Cr}(\mathrm{s})+3 \mathrm{e}^{-} \longrightarrow \mathrm{Cr}^{3}+$
12) $\mathrm{Cr}^{3+} \longrightarrow \mathrm{Cr}(\mathrm{s})+3 \mathrm{e}^{-}$
13) $\mathrm{Cr}(\mathrm{s}) \longrightarrow \mathrm{Cr}^{3+}+3 \mathrm{e}^{-}$
14) Given the overall cell reaction:

$$
\begin{aligned}
& \mathrm{Zn}(\mathrm{~s})+2 \mathrm{Ag}^{+}(\mathrm{aq}) \longrightarrow \\
& \mathrm{Zn}+2(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{~s})
\end{aligned}
$$

Which of the following will occur as the cell operates?

1) The amount of $\mathrm{Zn}(\mathrm{s})$ will increase.
2) The amount of $\mathrm{Ag}(\mathrm{s})$ will decrease.
3) The concentration of $\mathrm{Ag}^{+}(\mathrm{aq})$ will increase.
4) The concentration of $\mathrm{Zn}+2(\mathrm{aq})$ will increase.

A redox reaction always involves

1) a change in oxidation number
2) the transfer of protons
3) the formation of ions
4) a change of phase
5) In a voltaic cell composed of two half-cells, ions are allowed to flow from one half-cell to another by means of
6) a voltmeter
7) a salt bridge
8) an external conductor
9) electrodes
10) The oxidation number of nitrogen is highest in
11) N_{2}
12) NH_{3}
13) NO_{2}
14) $\mathrm{N}_{2} \mathrm{O}$
__ 8) Given the reaction:

$$
\begin{aligned}
& \mathrm{Zn}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq}) \longrightarrow \\
& \mathrm{Zn}^{2}+(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
\end{aligned}
$$

Which species is oxidized?

1) $\mathrm{H}_{2}(\mathrm{~g})$
2) $\mathrm{H}^{+}(\mathrm{aq})$
3) $\mathrm{Cl}^{-}(\mathrm{aq})$
4) $\mathrm{Zn}(\mathrm{s})$
5) What is the oxidation number of sulfur in $\mathrm{H}_{2} \mathrm{SO}_{4}$?
6) +4
7) 0
8) +6
9) -2
10) In the reaction $\mathrm{Mg}+\mathrm{Cl}_{2} \longrightarrow \mathrm{MgCl}_{2}$, the correct half-reaction for the oxidation that occurs is
11) $\mathrm{Cl}_{2} \longrightarrow 2 \mathrm{Cl}^{-}+2 \mathrm{e}^{-}$
12) $\mathrm{Mg}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Mg}^{2+}$
13) $\mathrm{Mg} \longrightarrow \mathrm{Mg}^{2+}+2 \mathrm{e}^{-}$
14) $\mathrm{Cl}_{2}+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Cl}^{-}$
__ 11) The type of reaction in an voltaic cell is best described as a
15) nonspontaneous oxidation-reduction reaction
16) spontaneous oxidation reaction, only
17) nonspontaneous oxidation reaction, only
18) spontaneous oxidation-reduction reaction
\qquad 12) In the reaction $\mathrm{Zn}^{0}+\mathrm{Cu}^{2}+\longrightarrow$ $\mathrm{Zn}^{2+}+\mathrm{Cu}^{0}$, which species is oxidized?
19) Zn 0
20) Cu^{0}
21) Cu^{2+}
22) Zn^{2+}
\qquad 13) The oxidation number of nitrogen in $\mathrm{N}_{2} \mathrm{O}$ is
23) +2
24) +1
25) -1
26) -2
\qquad 14) What is the oxidation number of oxygen in $\mathrm{HSO}_{4}{ }^{-}$?
27) -2
28) -4
29) +6
30) +1
\qquad 15) Which half-reaction correctly represents the oxidation which occurs in the reaction
$\mathrm{Cl}_{2}+2 \mathrm{Br}^{-}(\mathrm{aq}) \longrightarrow 2 \mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{Br}_{2}$?
31) $\mathrm{Cl}_{2} \longrightarrow 2 \mathrm{Cl}^{-}+2 \mathrm{e}^{-}$
32) $2 \mathrm{Br}^{-} \longrightarrow \mathrm{Br}_{2}+2 \mathrm{e}^{-}$
33) $2 \mathrm{Br}^{-}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Br}_{2}$
34) $\mathrm{Cl}_{2}+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Cl}^{-}$
\qquad 16) The diagram below shows a spoon that will be electroplated with nickel metal.

What will occur when switch S is closed?

1) The spoon will gain mass, and the $\mathrm{Ni}(\mathrm{s})$ will be oxidized.
2) The spoon will lose mass, and the $\mathrm{Ni}(\mathrm{s})$ will be reduced.
3) The spoon will gain mass, and the $\mathrm{Ni}(\mathrm{s})$ will be reduced.
4) The spoon will lose mass, and the $\mathrm{Ni}(\mathrm{s})$ will be oxidized.
5) Given the unbalanced equation:

$$
\ldots \mathrm{Br}_{2}+\ldots \mathrm{Sn} \longrightarrow \ldots \mathrm{Br}^{-}+\ldots \mathrm{Sn}^{2+}
$$

When the equation is correctly balanced using the smallest whole-number coefficients, the coefficient of Br^{-}is

1) 1
2) 2
3) 3
4) 4
___ 18) The diagram below represents a voltaic cell.

In order for the cell to operate, it should be provided with

1) a salt bridge
2) an anode
3) a cathode
4) an external path for electrons
_ 19) Redox reactions are made to occur by an externally applied electrical current in a(n)
5) galvanic cell
6) electrolytic cell
7) Danielle cell
8) voltaic cell
\qquad 20) Which of the following is a redox reaction?
9) $2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow$
$\mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{HCl}$
10) $2 \mathrm{KBr}+\mathrm{F}_{2} \longrightarrow 2 \mathrm{KF}+\mathrm{Br}_{2}$
11) $\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \longrightarrow$
$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{Pb}(\mathrm{OH})_{2}$
12) $2 \mathrm{HCl}+\mathrm{Mg}(\mathrm{OH})_{2} \longrightarrow$ $2 \mathrm{HOH}+\mathrm{MgCl}_{2}$
13) Given the reaction:

$$
\mathrm{Mg}+2 \mathrm{H}^{+} \longrightarrow \mathrm{Mg}^{2+}+\mathrm{H}_{2}
$$

The reducing agent is

1) H^{+}
2) Mg
3) Mg^{2+}
4) H_{2}
5) Which half-reactions occurs at the cathode in an electrolytic cell in which an object is being plated with copper?
6) $\mathrm{Cu}^{2}+\longrightarrow \mathrm{Cu}(\mathrm{s})+2 \mathrm{e}^{-}$
7) $\mathrm{Cu}(\mathrm{s})+2 \mathrm{e}^{-} \longrightarrow \mathrm{Cu}^{2+}$
8) $\mathrm{Cu}(\mathrm{s}) \longrightarrow \mathrm{Cu}^{2+}+2 \mathrm{e}^{-}$
9) $\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Cu}(\mathrm{s})$
10) Which quantities are conserved in all oxidation-reduction reactions?
11) neither charge nor mass
12) both charge and mass
13) mass, only
14) charge, only
15) In the reaction $\mathrm{Mg}+2 \mathrm{HCl} \longrightarrow$ $\mathrm{MgCl}_{2}+\mathrm{H}_{2}$, the magnesium
16) gains electrons and is oxidized
17) loses electrons and is reduced
18) gains electrons and is reduced
19) loses electrons and is oxidized

When this cell operates, the electrons flow from the

1) copper half-cell to the zinc half-cell through the salt bridge
2) copper half-cell to the zinc half-cell through the wire
3) zinc half-cell to the copper half-cell through the wire
4) zinc half-cell to the copper half-cell through the salt bridge
5) Given the reaction:

$$
\ldots \mathrm{Cu}(\mathrm{~s})+\ldots \mathrm{HNO}_{3}(\mathrm{aq}) \longrightarrow _\mathrm{Cu}\left(\mathrm{NO}_{3}\right) 2(\mathrm{aq})+\ldots \mathrm{NO}_{2}(\mathrm{~g})+\ldots \mathrm{H}_{2} \mathrm{O}(\ell)
$$

When the reaction is completely balanced using the smallest whole numbers, the coefficient of $\mathrm{HNO}_{3}(\mathrm{aq})$ will be

1) 1
2) 2
3) 3
4) 4
