| 1) | Given the reaction:                                                                                                                                                                                                                | 5)  | A redox reaction always involves                                                                                                                                                                                 |  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|    | $Ca(s) + Cu^{2+}(aq) \longrightarrow$ $Ca^{2+}(aq) + Cu(s)$                                                                                                                                                                        |     | <ol> <li>a change in oxidation number</li> <li>the transfer of protons</li> <li>the formation of ions</li> </ol>                                                                                                 |  |
|    | Which represents the correct half-reaction<br>for the reduction that occurs?<br>1) $Cu^{2+}(aq) + 2e^{-} \longrightarrow Cu(s)$<br>2) $Cu(s) \longrightarrow Cu^{2+}(aq) + 2e^{-}$                                                 | 6)  | <ul> <li>4) a change of phase</li> <li>In a voltaic cell composed of two half-cells, ions are allowed to flow from one half-cell to another by means of</li> <li>1) a voltmeter</li> </ul>                       |  |
|    | 3) $Cu(s) + 2e^{-} \longrightarrow Cu^{2+}(aq)$<br>4) $Cu^{2+}(aq) \longrightarrow Cu(s) + 2e^{-}$                                                                                                                                 |     | <ol> <li>a salt bridge</li> <li>an external conductor</li> <li>electrodes</li> </ol>                                                                                                                             |  |
| 2) | In the reaction $Cl_2 + H_2O \longrightarrow$<br>HCIO + HCl, the hydrogen is                                                                                                                                                       | 7)  | The oxidation number of nitrogen is <i>highest</i> in                                                                                                                                                            |  |
|    | <ol> <li>oxidized, only</li> <li>neither oxidized nor reduced</li> <li>both oxidized and reduced</li> <li>reduced, only</li> </ol>                                                                                                 | 8)  | 1) $N_2$ 3) $NO_2$ 2) $NH_3$ 4) $N_2O$ Given the reaction:                                                                                                                                                       |  |
| 3) | Which half-reaction correctly represents<br>reduction?<br>1) $Cr^{3+} + 3e^{-} \longrightarrow Cr(s)$<br>2) $Cr(s) + 3e^{-} \longrightarrow Cr^{3+}$                                                                               |     | $Zn(s) + 2H^+(aq) + 2CF(aq) \longrightarrow$ $Zn^{2+}(aq) + 2CF(aq) + H_2(g)$ Which species is oxidized?                                                                                                         |  |
|    | 3) $Cr^{3+} \longrightarrow Cr(s) + 3e^{-}$<br>4) $Cr(s) \longrightarrow Cr^{3+} + 3e^{-}$                                                                                                                                         |     | 1) $H_2(g)$ 3) $CF(aq)$                                                                                                                                                                                          |  |
| 4) | Given the overall cell reaction:                                                                                                                                                                                                   | 9)  | <ul> <li>2) H+(aq)</li> <li>4) Zn(s)</li> <li>What is the oxidation number of sulfur in H<sub>2</sub>SO<sub>4</sub>?</li> </ul>                                                                                  |  |
|    | $Zn(s) + 2Ag^{+}(aq) \longrightarrow$ $Zn^{+2}(aq) + 2Ag(s)$                                                                                                                                                                       | 10) | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                             |  |
|    | <ul> <li>Which of the following will occur as the cell operates?</li> <li>1) The amount of Zn(s) will increase.</li> <li>2) The amount of Ag(s) will decrease.</li> <li>3) The concentration of Ag<sup>+</sup>(aq) will</li> </ul> |     | In the reaction Mg + Cl <sub>2</sub> $\longrightarrow$ MgCl <sub>2</sub> , the correct half-reaction for the oxidation that occurs is<br>1) Cl <sub>2</sub> $\longrightarrow$ 2Cl <sup>+</sup> + 2e <sup>-</sup> |  |
|    | <ul> <li>4) The concentration of Zn+2(aq) will increase.</li> </ul>                                                                                                                                                                |     | 2) $Mg + 2e^{-} \longrightarrow Mg^{2+}$<br>3) $Mg \longrightarrow Mg^{2+} + 2e^{-}$<br>4) $Cl_{2} + 2e^{-} \longrightarrow 2Cl^{-}$                                                                             |  |

Name: \_\_\_\_\_

| 11) | The type of reaction in an voltaic cell is <i>best</i> described as a                       |                     |  |  |
|-----|---------------------------------------------------------------------------------------------|---------------------|--|--|
|     | 1) nonspontaneous oxidation-reduction reaction                                              |                     |  |  |
|     | 2) spontaneous oxidation reaction, only                                                     |                     |  |  |
|     | 3) nonspontaneous oxidation reaction, only                                                  |                     |  |  |
|     | 4) spontaneous oxidation-reduction reaction                                                 |                     |  |  |
| 12) | In the reaction $Zn^0 + Cu^{2+} \longrightarrow$                                            |                     |  |  |
|     | $Zn^{2+} + Cu^{0}$ , which species is oxidized?                                             |                     |  |  |
|     | 1) Zn <sup>0</sup>                                                                          | 3) Cu <sup>2+</sup> |  |  |
|     | 2) Cu <sup>0</sup>                                                                          | 4) Zn <sup>2+</sup> |  |  |
| 13) | The oxidation number of nitrogen in $N_2O$ is                                               |                     |  |  |
|     | 1) +2                                                                                       | 3) -1               |  |  |
|     | 2) +1                                                                                       | 4) -2               |  |  |
| 14) | What is the oxidation number of oxygen in                                                   |                     |  |  |
|     | HSO <sub>4</sub> -?                                                                         |                     |  |  |
|     | 1) -2                                                                                       | 3) +6               |  |  |
|     | 2) -4                                                                                       | 4) +1               |  |  |
| 15) | Which half-reaction correctly represents the                                                |                     |  |  |
|     | oxidation which occurs in the reaction<br>$Cl_{2} + 2Prr(a_{2}) = 2Cl_{2}(a_{2}) + Prr^{2}$ |                     |  |  |
|     | $Cl_2 + 2Br(aq) \longrightarrow 2Cl(aq) + Br_2?$                                            |                     |  |  |
|     | 1) $Cl_2 \longrightarrow 2Cl^2 + 2e^2$                                                      |                     |  |  |
|     | 2) $2Br^- \longrightarrow Br_2 + 2e^-$                                                      |                     |  |  |
|     | 3) $2Br^- + 2e^- \longrightarrow$                                                           | Br <sub>2</sub>     |  |  |
|     | 4) Cl <sub>2</sub> + 2e <sup>-</sup> $\longrightarrow$ 2                                    | 2CF                 |  |  |

The diagram below shows a spoon that will be electroplated with nickel metal.



What will occur when switch *S* is closed?

- 1) The spoon will gain mass, and the Ni(s) will be oxidized.
- 2) The spoon will lose mass, and the Ni(s) will be reduced.
- 3) The spoon will gain mass, and the Ni(s) will be reduced.
- 4) The spoon will lose mass, and the Ni(s) will be oxidized.
- 17) Given the unbalanced equation:

 $Br_2 + Sn \longrightarrow Br_+ Sn^{2+}$ 

When the equation is correctly balanced using the *smallest* whole-number coefficients, the coefficient of Br<sup>-</sup> is

- 1) 1 3) 3
- 2) 2 4) 4

## 18) The diagram below represents a voltaic cell.



In order for the cell to operate, it should be provided with

- 1) a salt bridge
- 2) an anode
- 3) a cathode
- 4) an external path for electrons

\_\_\_\_\_19) Redox reactions are made to occur by an externally applied electrical current in a(n)

- 1) galvanic cell
- 2) electrolytic cell
- 3) Danielle cell
- 4) voltaic cell

\_ 20) Which of the following is a redox reaction?

- 1)  $2NaCl + H_2SO_4 \longrightarrow$  $Na_2SO_4 + 2HCl$
- 2)  $2KBr + F_2 \longrightarrow 2KF + Br_2$
- 3)  $Ca(OH)_2 + Pb(NO_3)_2 \longrightarrow$  $Ca(NO_3)_2 + Pb(OH)_2$
- 4)  $2HCl + Mg(OH)_2 \longrightarrow$ 2HOH + MgCl<sub>2</sub>

21) Given the reaction:

22)

$$Mg + 2H^+ \longrightarrow Mg^{2+} + H_2$$

The reducing agent is

- 1) H<sup>+</sup> 3) Mg<sup>2+</sup>
- 2) Mg 4) H<sub>2</sub>

Which half-reactions occurs at the cathode in an electrolytic cell in which an object is being plated with copper?

- 1)  $Cu^{2+} \longrightarrow Cu(s) + 2e^{-}$
- 2)  $Cu(s) + 2e^{-} \longrightarrow Cu^{2+}$
- 3)  $Cu(s) \longrightarrow Cu^{2+} + 2e^{-}$
- 4)  $Cu^{2+} + 2e^{-} \longrightarrow Cu(s)$

23) Which quantities are conserved in *all* oxidation-reduction reactions?

- 1) neither charge nor mass
- 2) both charge and mass
- 3) mass, only
- 4) charge, only

 $\begin{array}{c} 24) \quad \text{In the reaction Mg + 2HCl} \longrightarrow \\ \text{MgCl}_2 + \text{H}_2, \text{ the magnesium} \end{array}$ 

- 1) gains electrons and is oxidized
- 2) loses electrons and is reduced
- 3) gains electrons and is reduced
- 4) loses electrons and is oxidized





When this cell operates, the electrons flow from the

- 1) copper half-cell to the zinc half-cell through the salt bridge
- 2) copper half-cell to the zinc half-cell through the wire
- 3) zinc half-cell to the copper half-cell through the wire
- 4) zinc half-cell to the copper half-cell through the salt bridge
- \_\_\_\_\_26) Given the reaction:

 $\_Cu(s) + \_HNO_3(aq) \longrightarrow \_Cu(NO_3)_2(aq) + \_NO_2(g) + \_H_2O(\ell)$ 

When the reaction is completely balanced using the *smallest* whole numbers, the coefficient of HNO<sub>3</sub>(aq) will be

1) 1 2) 2 3) 3 4) 4