Name:			
1)	Pure water at 25°C has a pH of 1) 14 2) 1×10^{-7}	6)	If 50. millilit needed to e an HCl solu
	$\begin{array}{c} 2) & 1 \times 10^{-14} \\ 3) & 1 \times 10^{-14} \\ 4) & 7 \end{array}$		solution is 1) 0.20 M 2) 10. M
2)	How many milliliters of 5.0 M NaOH are needed to exactly neutralize 40. milliliters of 2.0 M HCl?	7)	Household approximat
	1) 16 mL 3) 8.0 mL 2) 40. mL 4) 10. mL		 bromc methyl
3)	As HF dissolves in water, the following ionization reaction occurs:		 litmus phenol
	$HF + H_2O \iff H_3O^+ + F^-$	8)	Which form base pair?
	In this reaction, a proton is donated to		1) H ₃ PO
	1) H_2O by HF		2) H ₂ SO
	2) HF by F-		3) CH ₃ C
	3) H ₃ O+ by F-		4) H3O+
	4) $H_{3}O^{+}$ by $H_{2}O$	9)	The results
4)	What is the concentration of H ₃ O ⁺ ions, in moles per liter, of a 0.0001 M HCl solution?		
	1) 1×10^{-3}		re
	2) 1×10^{-1}		b
	3) 1 × 10-4		p
	4) 1×10^{-2}		
5)	Given the neutralization reaction:		Which form tested?
	$H_2SO_4 + 2KOH \longrightarrow$		1) C ₆ H ₁
	$K_2SO_4 + 2HOH$		2) NaOH
			$\begin{array}{c} 3) \text{HCI(a)} \\ 4) \text{C12H} \end{array}$
	Which compound is a salt?		ч, с <u>12</u> п
	1) H ₂ SO ₄	$ 10\rangle$	An aqueous
	2) K_2SO_4		reacts with
	3) KOH		This compo
	4) HOH		

ters of a 1.0 M NaOH solution is exactly neutralize 10. milliliters of ation, the molarity of the HCl

Λ 3) 5.0 M

4) 1.0 M

vinegar has a pH of ely 3.0. Which would appear n added to a vinegar solution?

- resol green
- orange
- lphthalein

nula represents a conjugate acid-

- 4 and PO 4^{3-}
- 4 and SO 4^{2-}
- COOH and CH₃COO-
- and OH-

of testing a colorless solution with tors are shown in the table below.

Indicator	Result
red litmus	blue
blue litmus	blue
phenolphthalein	pink

nula could represent the solution

- $2O_6(aq)$
- H(aq)
- **q**)
- $22O_{11}(aq)$

s solution of an ionic compound mus blue, conducts electricity, and an acid to form a salt and water. ound could be

1) HCl	3)	LiOH
--------	----	------

2) NaI 4) KNO₃ ____11) What type of reaction is represented by the following equation?

$$Al_2S_3 + 6H_2O \longrightarrow 2Al(OH)_3 + 3H_2S$$

- 1) electrolysis
- 2) neutralization
- 3) hydrolysis
- 4) dehydration
- 12) Which compound reacts with an acid to form a salt and water?
 - 1) KCl
 - 2) CH₃Cl
 - 3) KOH
 - 4) CH₃COOH
- ____13) According to the Arrhenius theory, the acidic property of an aqueous solution is due to an excess of
 - 1) H⁺ 3) H₂O
 - 2) H₂ 4) OH-
- ____14) According to the Arrhenius theory, which list of compounds includes only bases?
 - 1) LiOH, Ca(OH)₂, and C₂H₄(OH)₂
 - 2) KOH, Ca(OH)₂, and CH₃OH
 - 3) NaOH, Ca(OH)₂, and CH₃COOH
 - 4) KOH, NaOH, and LiOH
- _____15) Which substance can act as an Arrhenius acid in aqueous solution?
 - 1) NH₃ 3) HI
 - 2) LiH 4) NaI

16) If a solution has a hydronium ion concentration of 1×10^{-9} M, the solution is

- 1) basic and has a pH of 5
- 2) acidic and has a pH of 9
- 3) basic and has a pH of 9
- 4) acidic and has a pH of 5
- ____17) What is the conjugate base of NH₃?
 - 1) NO₃- 3) NH₂-
 - 2) NO₂- 4) NH₄+

Which pH value indicates the *most* basic solution?
1) 3 3) 8
2) 7 4) 11
Which concentration indicates a basic

- 19) Which concentration indicates a basic solution at 298 K?
 - 1) $[OH^-] = 1.0 \times 10^{-7}$

_ 18)

- 2) $[H_3O^+] > 1.0 \times 10^{-7}$
- 3) $[H_3O^+] = 1.0 \times 10^{-7}$
- 4) [OH-] > 1.0 × 10-7
- 20) A 0.1 M solution of HCl contains
 - an equal number of H₃O⁺ ions and OH⁻ ions
 - 2) fewer H₃O⁺ ions than OH⁻ ions
 - 3) more H₃O⁺ ions than OH⁻ ions
 - 4) neither H₃O⁺ ions nor OH⁻ ions
- 21) An indicator was used to test a water solution with a pH of 12. Which indicator color would be observed?
 - 1) pink with phenolphthalein
 - 2) colorless with litmus
 - 3) red with litmus
 - 4) colorless with phenolphthalein
 - 22) As a solution of NaOH is diluted from 0.1 M to 0.001 M, the pH of the solution
 - 1) decreases
 - 2) increases
 - 3) remains the same
 - 23) When an acid solution exactly neutralizes a base solution, what acid-base combination *always* produces a mixture with a pH less than 7?
 - 1) a weak acid and a weak base
 - 2) a strong acid and a strong base
 - 3) a strong acid and a weak base
 - 4) a weak acid and a strong base

24)	According to the Bronsted-Lowry theory,
	H ₂ O is considered to be a base when it

- 1) donates a proton
- 2) accepts a proton
- 3) donates an electron
- 4) accepts an electron

____25) When the salt Na₂CO₃ undergoes

hydrolysis, the resulting solution will be

- 1) basic with a pH less than 7
- 2) basic with a pH greater than 7
- 3) acidic with a pH greater than 7
- 4) acidic with a pH less than 7
- _____26) Given the reaction:

 $HX + H_2O \longrightarrow H_3O^+(aq) + X^-(aq)$

Based on the equation, HX would be classified as

- 1) an acid, because it accepts a proton
- 2) a base, because it accepts a proton
- 3) an acid, because it donates a proton
- 4) a base, because it donates a proton

___ 27)

- Which of the following statements *best* describes a solution with a pH of 3?
 - 1) It has an H₃O⁺ ion concentration of 1×10^{-3} mol/L and is acidic.
 - 2) It has an H₃O+ ion concentration of 1×10^3 mol/L and is basic.
 - 3) It has an H₃O+ ion concentration of 1×10^{-3} mol/L and is basic.
 - 4) It has an H₃O⁺ ion concentration of 1×10^3 mol/L and is acidic.
- 28) Which 0.1 M solution has a pH greater than 7?
 - 1) KCl
 - 2) KOH
 - 3) CH₃COOH
 - 4) C₆H₁₂O₆
- 29) As the H₃O⁺ ion concentration of a solution increases, the pH of the solution
 - 1) decreases
 - 2) increases
 - 3) remains the same
- _ 30) Which salt hydrolyzes in water to form a solution that is acidic?
 - 1) NaCl 3) KCl
 - 2) LiCl 4) NH4Cl