Name: \qquad
\qquad 1) Pure water at $25^{\circ} \mathrm{C}$ has a pH of

1) 14
2) 1×10^{-7}
3) 1×10^{-14}
4) 7
\qquad 2) How many milliliters of 5.0 M NaOH are needed to exactly neutralize 40 . milliliters of 2.0 M HCl ?
5) 16 mL
6) $40 . \mathrm{mL}$
7) 8.0 mL
8) $10 . \mathrm{mL}$
__ 3) As HF dissolves in water, the following ionization reaction occurs:

$$
\mathrm{HF}+\mathrm{H}_{2} \mathrm{O} \leftrightharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{F}^{-}
$$

In this reaction, a proton is donated to

1) $\mathrm{H}_{2} \mathrm{O}$ by HF
2) HF by F^{-}
3) $\mathrm{H}_{3} \mathrm{O}^{+}$by F^{-}
4) $\mathrm{H}_{3} \mathrm{O}^{+}$by $\mathrm{H}_{2} \mathrm{O}$
\qquad 4) What is the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$ions, in moles per liter, of a 0.0001 M HCl solution?
5) 1×10^{-3}
6) 1×10^{-1}
7) 1×10^{-4}
8) 1×10^{-2}
9) Given the neutralization reaction:

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{KOH} \longrightarrow \\
& \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{HOH}
\end{aligned}
$$

Which compound is a salt?

1) $\mathrm{H}_{2} \mathrm{SO}_{4}$
2) $\mathrm{K}_{2} \mathrm{SO}_{4}$
3) KOH
4) HOH

If 50 . milliliters of a 1.0 M NaOH solution is needed to exactly neutralize 10 . milliliters of an HCl solution, the molarity of the HCl solution is

1) 0.20 M
2) $10 . \mathrm{M}$
3) 5.0 M
4) 1.0 M
5) Household vinegar has a pH of approximately 3.0 . Which would appear yellow when added to a vinegar solution?
6) bromcresol green
7) methyl orange
8) litmus
9) phenolphthalein

Which formula represents a conjugate acidbase pair?

1) $\mathrm{H}_{3} \mathrm{PO}_{4}$ and $\mathrm{PO}_{4}{ }^{3-}$
2) $\mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{SO}_{4}{ }^{2-}$
3) $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COO}^{-}$
4) $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}
\qquad 9) The results of testing a colorless solution with three indicators are shown in the table below.

Indicator	Result
red litmus	blue
blue litmus	blue
phenolphthalein	pink

Which formula could represent the solution tested?

1) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{aq})$
2) $\mathrm{NaOH}(\mathrm{aq})$
3) $\mathrm{HCl}(\mathrm{aq})$
4) $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(\mathrm{aq})$
\qquad 10) An aqueous solution of an ionic compound turns red litmus blue, conducts electricity, and reacts with an acid to form a salt and water. This compound could be
5) HCl
6) NaI
7) LiOH
8) KNO_{3}
__ 11) What type of reaction is represented by the following equation?

$$
\mathrm{Al}_{2} \mathrm{~S}_{3}+6 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{H}_{2} \mathrm{~S}
$$

1) electrolysis
2) neutralization
3) hydrolysis
4) dehydration
\qquad 12) Which compound reacts with an acid to form a salt and water?
5) KCl
6) $\mathrm{CH}_{3} \mathrm{Cl}$
7) KOH
8) $\mathrm{CH}_{3} \mathrm{COOH}$
\qquad 13) According to the Arrhenius theory, the acidic property of an aqueous solution is due to an excess of
9) H^{+}
10) H_{2}
11) $\mathrm{H}_{2} \mathrm{O}$
12) OH^{-}
\qquad 14) According to the Arrhenius theory, which list of compounds includes only bases?
13) $\mathrm{LiOH}, \mathrm{Ca}(\mathrm{OH})_{2}$, and $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{OH})_{2}$
14) $\mathrm{KOH}, \mathrm{Ca}(\mathrm{OH})_{2}$, and $\mathrm{CH}_{3} \mathrm{OH}$
15) $\mathrm{NaOH}, \mathrm{Ca}(\mathrm{OH})_{2}$, and $\mathrm{CH}_{3} \mathrm{COOH}$
16) $\mathrm{KOH}, \mathrm{NaOH}$, and LiOH
__ 15) Which substance can act as an Arrhenius acid in aqueous solution?
17) NH_{3}
18) LiH
19) HI
20) NaI
\qquad 16) If a solution has a hydronium ion concentration of $1 \times 10^{-9} \mathrm{M}$, the solution is
21) basic and has a pH of 5
22) acidic and has a pH of 9
23) basic and has a pH of 9
24) acidic and has a pH of 5
17) What is the conjugate base of NH{3} ?
25) NO_{3}^{-}
26) NO_{2}^{-}
27) $\mathrm{NH}_{2}-$
28) $\mathrm{NH}_{4}{ }^{+}$
\qquad 18) Which pH value indicates the most basic solution?
29) 3
30) 7
31) 8
32) 11
\qquad 19) Which concentration indicates a basic solution at 298 K ?
33) $\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-7}$
34) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>1.0 \times 10^{-7}$
35) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.0 \times 10^{-7}$
36) $\left[\mathrm{OH}^{-}\right]>1.0 \times 10^{-7}$
__ 20) A 0.1 M solution of HCl contains
37) an equal number of $\mathrm{H}_{3} \mathrm{O}^{+}$ions and OH^{-}ions
38) fewer $\mathrm{H}_{3} \mathrm{O}^{+}$ions than OH^{-}ions
39) more $\mathrm{H}_{3} \mathrm{O}^{+}$ions than OH^{-}ions
40) neither $\mathrm{H}_{3} \mathrm{O}^{+}$ions nor OH^{-}ions
41) An indicator was used to test a water solution with a pH of 12 . Which indicator color would be observed?
42) pink with phenolphthalein
43) colorless with litmus
44) red with litmus
45) colorless with phenolphthalein
46) As a solution of NaOH is diluted from 0.1 M to 0.001 M , the pH of the solution
47) decreases
48) increases
49) remains the same
_ 23) When an acid solution exactly neutralizes a base solution, what acid-base combination always produces a mixture with a pH less than 7?
50) a weak acid and a weak base
51) a strong acid and a strong base
52) a strong acid and a weak base
53) a weak acid and a strong base
___ 24) According to the Bronsted-Lowry theory, $\mathrm{H}_{2} \mathrm{O}$ is considered to be a base when it
54) donates a proton
55) accepts a proton
56) donates an electron
57) accepts an electron
\qquad When the salt $\mathrm{Na}_{2} \mathrm{CO}_{3}$ undergoes hydrolysis, the resulting solution will be
58) basic with a pH less than 7
59) basic with a pH greater than 7
60) acidic with a pH greater than 7
61) acidic with a pH less than 7
62) Given the reaction:

$$
\mathrm{HX}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+X^{-}(\mathrm{aq})
$$

Based on the equation, $\mathrm{H} X$ would be classified as

1) an acid, because it accepts a proton
2) a base, because it accepts a proton
3) an acid, because it donates a proton
4) a base, because it donates a proton
\qquad 27) Which of the following statements best describes a solution with a pH of 3 ?
5) It has an $\mathrm{H}_{3} \mathrm{O}^{+}$ion concentration of $1 \times 10^{-3} \mathrm{~mol} / \mathrm{L}$ and is acidic.
6) It has an $\mathrm{H}_{3} \mathrm{O}^{+}$ion concentration of $1 \times 10^{3} \mathrm{~mol} / \mathrm{L}$ and is basic.
7) It has an $\mathrm{H}_{3} \mathrm{O}^{+}$ion concentration of $1 \times 10^{-3} \mathrm{~mol} / \mathrm{L}$ and is basic.
8) It has an $\mathrm{H}_{3} \mathrm{O}^{+}$ion concentration of $1 \times 10^{3} \mathrm{~mol} / \mathrm{L}$ and is acidic.

Which 0.1 M solution has a pH greater than 7 ?

1) KCl
2) KOH
3) $\mathrm{CH}_{3} \mathrm{COOH}$
4) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
5) As the $\mathrm{H}_{3} \mathrm{O}^{+}$ion concentration of a solution increases, the pH of the solution
6) decreases
7) increases
8) remains the same
9) Which salt hydrolyzes in water to form a solution that is acidic?
10) NaCl
11) LiCl
12) KCl
13) $\mathrm{NH}_{4} \mathrm{Cl}$
