1) The graph below represents four solubility curves. Which curve *best* represents the solubility of a gas in water?

- A solution containing 90. grams of KNO₃ per 100. grams of H₂O at 50. °C is considered to be
 - 1) concentrated and unsaturated
 - 2) dilute and unsaturated
 - 3) dilute and supersaturated
 - 4) concentrated and supersaturated
- ____ 3) Which solution is the *most* concentrated?
 - 1) 2 moles of solute dissolved in 3 liters of solution
 - 2) 4 moles of solute dissolved in 8 liters of solution
 - 3) 6 moles of solute dissolved in 4 liters of solution
 - 4) 1 mole of solute dissolved in 1 liter of solution
- 4) According to the Solubility Curves chemistry reference table, how does a decrease in temperature from 40°C to 20°C affect the solubility of NH3 and KCl?
 - 1) The solubility of NH₃ increases, and the solubility of KCl decreases.
 - 2) The solubility of NH₃ increases, and the solubility of KCl increases.
 - 3) The solubility of NH₃ decreases, and the solubility of KCl decreases.
 - The solubility of NH3 decreases, and the solubility of KCl increases.

- 5) What is the concentration of a solution which contains 1 mole of CaCl₂ dissolved in 2,000 milliliters of solution?
 - 1) 1. M 3) 0.25 M
 - 2) 2. M 4) 0.5 M
- 6) Which solution has the *highest* boiling point?
 - 1) 1 mole of NaNO3 in 1000 g of water
 - 2) 1 mole of NaNO₃ in 500 g of water
 - 3) 1 mole of NaNO₃ in 250 g of water
 - 4) 1 mole of NaNO₃ in 750 g of water
- _ 7) How many grams of NaNO3 per 100 grams of H₂O would produce a supersaturated solution?
 - 1) 60 g at 10°C
 - 2) 90 g at 30°C
 - 3) 80 g at 20°C
 - 4) 110 g at 40°C

9)

8) Based on the *Solubility Curves* chemistry reference table, which salt solution could contain 42 grams of solute per 100 grams of water at 40°C?

- 1) a saturated solution of KCl
- 2) an unsaturated solution of NH4Cl
- 3) a saturated solution of KClO₃
- 4) an unsaturated solution of NaCl
- A student determined the mass, in grams, of compound X that would saturate 30. grams of water over a temperature range of 40°C in 10.-degree intervals. The results are tabulated below.

Grams of Dissolved Compound <i>X</i>	Temperature of 30. grams of H ₂ O		
2.0 g	10.ºC		
4.0 g	20.°C		
8.0 g	30.°C		
16 g	40.°C		
32 g	50.°C		

If this solubility trend continues, what is the total number of grams of compound *X* that will dissolve in 30. grams of water at 60. $^{\circ}$ C?

1)	32		3)	64

2) 16 4) 48

10)	Which salt has the <i>greatest</i> of between 30° C and 50° C?	change in solubility	18)	In an aqueous solution the solute is	on of potassium chloride,
	1) NaCl	3) NaNO3		1) H ₂ O	3) K
	2) KCl	4) KNO3		2) Cl	4) KCl
11)		.) 12.05	19)	How many moles of	H_2SO_4 are needed to
11)	reference table, when 100 gr saturated with KNO ₃ at 70°	ams of water C is cooled to	13)	prepare 5.0 liters of H ₂ SO ₄ ?	a 2.0 M solution of
	25°C, the total number of gra	ams of KNO3 that		1) 10.	3) 5.0
	will precipitate is	5		2) 20.	4) 2.5
	1) 30 g	3) 45 g	20)	At 10°C, 23 grams	of a substance saturates
	2) 80 g	4) 95 g		100. grams of water	The substance could be
12)	What is the molarity of a solu	tion of KNO3		1) KNO3	3) KCl
	(molecular mass = 101) that	contains 404 grams		2) NaNO ₃	4) NH4Cl
	of KNO ₃ in 2.00 liters of solu	ation?	21)	According to the So	lubility Curves chemistry
	1) 1.00 M	3) 0.500 M		reference table, a te	mperature change from
	2) 2.00 M	4) 4.00 M		60°C to 90°C has t	he <i>least</i> effect on the
13)	What is the molarity of a solu	tion that contains		solubility of	
	40. grams of NaOH in 0.50 l	iter of solution?		1) NH3	3) KClO ₃
	1) 1.0 M	3) 0.25 M		2) KCl	4) SO ₂
	2) 2.0 M	4) 0.50 M	22)	How many liters of	a 0.5 M sodium hydroxide
14)	Which solution contains the g	reatest number of		solution would conta	in 2 moles of solute?
	$\frac{1}{2} = 0.5 \text{ J} = 6.05 \text{ M}$			1) 1 L	3) 3 L
	1) 0.5 L of 0.5 M 2) 0.5 L of 2 M			2) 2 L	4) 4 L
	$\begin{array}{c} 2) & 0.5 \pm 0.12 \text{ M} \\ 3) & 2 \pm 0.105 \text{ M} \end{array}$		23)	How many grams of	f KNO ₃ are needed to
	4) 2 L of 2 M			saturate 50. grams o	of water at 70. °C?
15)	A solution contains 14 grams	of KCl in		1) 130 g	3) 30 g
/	100. grams of water at 40.°C	C. What is the		2) 65 g	4) 160 g
	minimum amount of KCl that make this a saturated solution	must be added to n?	24)	Based on the <i>Solub</i> , reference table, what	<i>ility Curves</i> chemistry at change will cause the
	1) 19 g	3) 25 g		solubility of KNO3(s	s) to increase?
	2) 44 g	4) 14 g		1) decreasing the	pressure
16)	A solution contains 90 grams	of a salt dissolved		 2) KCI 4) SO2 22) How many liters of a 0.5 M sodium hydroxide solution would contain 2 moles of solute? 1) 1 L 2) 2 L 4) 4 L 23) How many grams of KNO3 are needed to saturate 50. grams of water at 70. °C? 1) 130 g 3) 30 g 65 g 160 g 24) Based on the <i>Solubility Curves</i> chemistry reference table, what change will cause the solubility of KNO3(s) to increase? decreasing the pressure decreasing the temperature increasing the temperature increasing the pressure 25) The freezing point of a 1.00-molal solution of C2H4(OH)2 is <i>closest</i> to +3.72°C -3.72°C 	
	in 100 grams of water at 40° could be an unsaturated solut	at must be added to on? 24)Based on the Solubility Curves chemistry reference table, what change will cause the solubility of KNO3(s) to increase?3)25 g 4)14 g4)14 g1)bs of a salt dissolved 0°C. The solution ution of1)0°C. The solution ution of2)1)decreasing the temperature 3)3)increasing the pressure			
	1) $N_{2}C_{1}$	$3) N_2 NO_2$	25)	The freezing point of	f a 1.00-molal solution of
	2) KCl	4) KNO2		$C_2H_4(OH)_2$ is close	<i>est</i> to
				1) +1.86°C	3) -1.86°C
I'/)	What is the total number of g (formula mass $= 40$) paeded	to make 1.0 liter		2) +3.72°C	4) -3.72°C
	of a 0.20 M solution?	to make 1.0 liter	26)	According to the So	lubility Curves chemistry
	1) 80 σ	3) 20 g	20)	reference table, what	at is the maximum number
	2) 8.0 g	4) 2.0 g		of grams of NH4Cl	that will dissolve in
		, U		200 grams of water	at 70°C?
				1) 85 g	3) 100 g
				2) 62 g	4) 124 g

- ____ 27) Based on the *Solubility Guidelines* chemistry reference table, a saturated solution of which salt would be *most* concentrated?
 - 1) PbCrO₄ 3) AgCl
 - 2) BaSO₄ 4) ZnCl₂
- ____ 28) How do the freezing and boiling points of a sample of water change when 1 mole of NaCl is dissolved in it?
 - 1) The freezing point increases and the boiling point decreases.
 - 2) The freezing point increases and the boiling point increases.
 - 3) The freezing point decreases and the boiling point increases.
 - 4) The freezing point decreases and the boiling point decreases.
- 29) Which expression defines the molality (*m*) of a solution?
 - 1) $\frac{\text{moles of solute}}{\text{kg of solution}}$ 2) $\frac{\text{grams of solute}}{\text{kg of solution}}$ 3) $\frac{\text{grams of solute}}{\text{kg of solute}}$
 - by kg of solvent moles of solute
- ____ 30) What is the molarity of a solution that contains 112 grams of KOH in 2.00 liters of solution?

1)	1.00 M	3)	3.00 M
2)	2.00 M	4)	4.00 M

- ____ 31) A student dissolves 1.0 mole of sucrose (C12H22O11) in 1,000. grams of water at 1.0 atmosphere. Compared to the boiling point of pure water, the boiling point of the resulting solution is
 - 1) 0.52° C lower
 - 2) 0.52° C higher
 - 3) 1.86°C lower
 - 4) 1.86° C higher

- ____ 32) Based on the *Solubility Guidelines* chemistry reference table, which saturated solution would be the *least* concentrated?
 - 1) potassium sulfate
 - 2) barium sulfate
 - 3) lithium sulfate
 - 4) sodium sulfate
- ____33) How many grams of ammonium chloride (gram formula mass = 53.5 g) are contained in 0.500 L of a 2.00 M solution?
 - 1) 53.5 g 3) 107 g
 - 2) 26.5 g 4) 10.0 g
 - 34) At standard pressure, a 1-molal solution of sugar has a boiling point
 - greater than 100°C and a freezing point of greater than 0°C
 - greater than 100°C and a freezing point of less than 0°C
 - less than 100°C and a freezing point of greater than 0°C
 - less than 100°C and a freezing point of less than 0°C
 - _ 35) According to the *Solubility Curves* chemistry reference table, which of the following is the *best* description of the system prepared by dissolving 30 grams of NH₃(g) in 100 grams of water at 20°?
 - an unsaturated solution of NH3 with no excess NH3(g)
 - a saturated solution of NH₃ with no excess NH₃(g)
 - a saturated solution of NH₃ in contact with excess NH₃(g)
 - an unsaturated solution of NH3 in contact with excess NH3(g)
- ____ 36) A solution will boil at the *highest* temperature when it contains 1 mole of nonvolatile solute dissolved in
 - 1) 250 g of solvent
 - 2) 750 g of solvent
 - 3) 1,000 g of solvent
 - 4) 500 g of solvent

____ 37) A student obtained the following data in a chemistry laboratory.

Trial	Temperature (°C)	Solubility (grams of KNO ₃ /100 g of H ₂ 0)
1	25	40
2	32	50
3	43	70
4	48	60

Based on the Solubility Curves chemistry reference table, which of the trials seems to be in error?1)12)23)34)4

____38) The following data were recorded while determining the solubility of a certain salt.

Temperature (°C)	10	20	30	40	50
Grams Solute/100. g H ₂ O	30	33	36	39	42

Which graph best represents the solubility of this salt?

